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Abstract. We construct a non-local gauge-invariant Lagrangian to model the electromagnetic interaction of
the proton. The Lagrangian includes all allowed operators with dimension up to five. We compute the two-
photon exchange contribution to elastic electron–proton scattering using this effective non-local Lagrangian.
The one-loop calculation in this model includes the standard box and cross box diagram with the standard
on-shell form of the hadron electromagnetic vertices. Besides this we find an extra contribution, which de-
pends on an unknown constant. We use experimentally extracted form factors for our calculation. We find
that the correction to the reduced cross section is slightly non-linear as a function of the photon longitudinal
polarization ε. The non-linearity seen is within the experimental error bars of the Rosenbluth data. The fi-
nal result completely explains the difference between the form factor ratio GE/GM extracted by Rosenbluth
separation technique at SLAC and polarization transfer technique at JLAB.

1 Introduction

The electromagnetic form factors F1 and F2 parametrize
the vertex of the electromagnetic interaction of a photon
with an on-shell proton,

Γµ(p, p
′) = γµF1(q

2)+
iκp
2Mp

F2(q
2)σµνq

ν , (1)

where p and p′ are the initial and final proton momenta,
Mp is the proton mass, κp its anomalous magnetic mo-
ment and q = p′−p is the momentum transfer. The func-
tions F1 and F2 are called the Dirac and Pauli form fac-
tors respectively. They are experimentally measured by
elastic scattering of electrons on protons, assuming that
the process is dominated by one-photon exchange diagram
(Fig. 1). We also define Q2 = −q2 ≥ 0. Besides the form
factors F1 and F2, it is also convenient to define the elec-
tric and magnetic form factors (or the Sachs form factors),
GE and GM, which are more suitable for experimental
extraction:

GE(Q
2) = F1(Q

2)− τκpF2(Q
2) ,

GM(Q
2) = F1(Q

2)+κpF2(Q
2) , (2)

where τ = Q2/4M2p . At Q
2 = 0, F1 = F2 = 1 and GE =

GM/µp = 1, where µp is the magnetic moment of the pro-
ton. The form factor GM ≈ µpGD where GD is the dipole
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function,

GD =
1(

1+ Q2

0.71

)2 . (3)

At lowmomenta,GE is also approximately equal toGD. At
large momenta, Q2� 1 GeV2,

GM, F1 ∝
1

Q4
. (4)

The experimental status of GE and F2 is, however, cur-
rently unclear at large momentum transfer.
A standard technique for the extraction of the proton

form factors is the Rosenbluth separation [1]. Here one
considers the unpolarized elastic scattering of electrons on
target protons. In the one-photon exchange approximation
the cross section can be written as

dσ

dΩ
=
σMott

ε(1+ τ)

[
τG2M(Q

2)+ εG2E(Q
2)
]
, (5)

where ε = 1/[1+2(1+ τ) tan2(θe/2)] is the longitudinal
polarization of the photon and θe is the electron scat-
tering angle. One finds that the reduced cross section,
σR = τG

2
M(Q

2)+ εG2E(Q
2) depends linearly on ε. By mak-

ing a linear fit to the observed σR as a function ε at
fixed Q2, one can, therefore, extract both GM and GE.
At large Q2, GM dominates at all values of ε. Hence the
uncertainty in the extraction of GE can be large at large
Q2. Recent results for Rosenbluth separation are available
from SLAC [2, 3] and JLAB [4]. The SLAC data shows
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Fig. 1. The one-photon exchange diagram contributing to the
elastic electron–proton scattering. Here k and k′ refer to the
initial and final electron momenta and p and p′ to the initial
and final proton momenta respectively. q = k−k′ = p′−p is the
momentum exchanged

that
µpGE
GM

≈ 1 up to momentum transferQ2 ≈ 6 GeV2. The

JLAB data is available at Q2 = 2.64, 3.20 and 4.10 GeV2

and shows a similar trend. This result also implies that the
ratio F2/F1 ∝ 1/Q2.
A direct extraction of the ratio GE/GM is possible by

elastic scattering of longitudinally polarized electrons on a
target proton, 	e+p→ e+ 	p [5–10]. In the one-photon ex-
change approximation, the recoiling proton acquires only
two polarization components, Pl, parallel to the proton
momentum and Pt, perpendicular to the proton momen-
tum in the scattering plane. The ratio obeys

GE

GM
=−
Pt

Pl

Ee+E
′
e

2Mp
tan

(
θe

2

)
, (6)

where Ee and E
′
e are the energies of the initial and final

electron. This technique, therefore, directly yields the ratio
GE/GM. The results [11–14], available from JLAB, show
that µpGE/GM decreases with Q

2. A straight line fit to the
data gives

µpGE

GM
≈ 1.06−0.15Q2, (7)

in the momentum range 0.5< Q2 < 5.6GeV2. The ratio,
therefore, becomes as small as 0.2 at Q2 = 5.6 GeV2, the

Fig. 2. The two-photon exchange
diagrams contributing to the elas-
tic electron–proton scattering:
a box diagram and b cross box
diagram

maximum momentum transfer in this experiment. The
polarization transfer results also imply that QF2/F1 ∼ 1
for Q2 > 1 GeV2. The observed trend in the polarization
transfer experiment is, therefore, completely different from
what is measured using the Rosenbluth separation. This
is clearly a serious problem and has attracted considerable
attention in the literature [15, 16].

2 Two-photon exchange

An obvious source of error is the higher order correc-
tions to the elastic scattering process. A reliable extrac-
tion of the form factors requires a careful treatment of
the radiative corrections including the soft photon emis-
sion, which give a significant correction to the cross sec-
tion [17–20]. These contributions are calculated by keep-
ing only the leading order terms in the soft photon mo-
mentum. Furthermore only the infrared divergent terms,
which are required to cancel the divergences in the soft
photon emission, are included in the radiative corrections.
It is possible that the terms not included in these cal-
culations may be responsible for the observed difference.
Any such correction is likely to be small and hence can-
not significantly change the results of the polarization
transfer experiment. However, a small correction to the
Rosenbluth separation could imply a large correction to
the extracted form factor GE. A possible correction is the
two-photon exchange diagram, which has attracted con-
siderable attention in the literature [21–27]. Such a di-
agram is taken into account while computing the radia-
tive corrections, but only the infrared divergent contribu-
tion is included. It is possible that the remaining contri-
bution gives a significant correction. One may also con-
sider next to leading order corrections in the soft pho-
ton momenta to the soft photon emission diagrams. Both
of these contributions receive unknown hadronic correc-
tions and cannot be calculated in a model independent
manner.
In this paper we estimate the two-photon exchange

contribution using an effective non-local Lagrangian. The
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box and cross box diagrams that contribute are shown
in Fig. 2a and b respectively. As discussed later, in the
non-local formalism we need to evaluate one more di-
agram. The two-photon contribution has also been ob-
tained by model calculations in [23–25]. The authors
find that they are able to partially reconcile the dis-
crepancy. The results of [23–25] show that the predicted
Rosenbluth plots are no longer linear in ε. The experi-
mental results obtained from JLAB [4] show very little
deviation from linearity. The SLAC results [3] can incor-
porate some non-linearity due to the presence of rela-
tively larger error bars. The present limit on the devi-
ation from linearity is given in [28]. In [26] the authors
argue, using charge conjugation and crossing symmetry,
that two-photon exchange contribution must necessar-
ily be non-linear in ε. If the two-photon exchange con-
tribution shows large non-linearity as a function of ε,
then it cannot provide an explanation of the observed
anomaly.

3 General electromagnetic vertex of proton

The elementary electromagnetic vertex of an on-shell pro-
ton is given in (1). When the proton is off-shell, the vertex
is expected to be more general. Further, it must satisfy
the WT identity, following from gauge invariance, which
implies a relation between Γµ(p, p

′) and the inverse pro-
ton propagator, S−1F (p). A local theory of interaction of
a proton and a photon would have a U(1) gauge invariance
implied by local transformations and would imply the WT
identity:

qµΓµ(p, p
′) = S−1F (p

′)−S−1F (p) . (8)

This identity would be violated if in calculating the two-
photon exchange diagrams one uses the standard on-shell
form factors defined in (1) and a free proton propagator.
Here we are interested in formulating the theory in terms
of an effective non-local action, which will allow us to main-
tain gauge invariance in the presence of form factors in the
electromagnetic interaction of proton. It is certainly pos-
sible to maintain gauge invariance in a local theory also,
but in this case the form factors will arise only after we take
into account loop corrections in the strong interactions. It
is not clear how to systematically do calculations in such
a case. In the present case the form factors are present at
the tree-level interaction of a photon with a proton. The
vertex Γµ(p, p

′) satisfies a generalized non-local version of
the WT identity:1

g
(
q2
)
qµΓµ(p, p

′) = S−1F (p
′)−S−1F (p) , (9)

where g
(
q2
)
is a function of q2 appearing in the gauge-

transformation equations, ultimately to be related to

1 Such non-local WT identities generally occur in non-local
quantum field theories; see e.g. [29]. This WT identity reduces
to the usual one as q→ 0, provided g(0) = 1.

a form factor in the next section. As we shall see in the
next section, this identity follows from a non-local electro-
magnetic invariance and in fact is more appropriate for an
extended object like a proton. In the local limit, the func-
tion g(q2)→ 1, and the identity in (9) reduces to the local
WT identity. On account of the charge-conjugation invari-
ance of the proton–photon interaction, the vertex Γµ(p, p

′),
a 4×4 matrix, must satisfy2

C−1Γµ(p, p
′)C =−ΓTµ (−p

′,−p) , (10)

where C is the charge-conjugate matrix, with CγµC
−1 =

−γTµ
3 We now express the vertex in its most general form,

employing the 16 linearly independent Dirac matrices, 1,
γ5, γµ, γµγ5 and σµν , and the 4-vectors P

µ ≡ (p+p′)µ and
qµ ≡ (p′−p)µ. We get

Γµ(p, p
′) = aPµ+ bqµ+ cγµ

+d �PPµ+ e �Pqµ+f �qPµ+ g �qqµ
+hσµαP

α+ jσµαq
α

+kσαβP
αqβPµ+ lσαβP

αqβqµ

+mγαγ5ξ
ναβ
µ Pβqν . (11)

Here, the 12 coefficients a, b, . . . ,m are functions of the
three Lorentz invariants p2, p′2 and q2. Charge conjuga-
tion requires that a, c, d, g, j and k are symmetric under
p2↔ p′2 and b, e, f , h, l andm are antisymmetric under the
same operation. To implement the WT identity, we write
the expression

S−1F (p) = α
(
p2
)
�p+β

(
p2
)

(12)

in its most general form. We then impose the WT identity
given in (9). This leads to some constraints between the co-
efficients. The net result of all this is the following form for
Γµ:

Γµ(p, p
′) = a′Pµ+ c

′γµ+ jσµαq
α+d′ �PPµ

+7 divergence free terms .

We enumerate the divergence free terms (i.e. Xµ with
qµXµ ≡ 0):

b′
[
(p′2−p2)qµ− q

2Pµ
]
+f (−P, qγµ+ �qPµ)

+ g
(
−q2γµ+ �qqµ

)
+k
(
−σµαP

αP, q+σαβP
αqβPµ

)

+ l
(
σµαP

αq2−σβαP
αqβqµ

)
+ e′
(
−q2 �PPµ+P, q �Pqµ

)

+mγαγ5ξ
ναβ
µ Pβqν .

We further note the relations that arise from the WT iden-
tity, and which restrict the form of some of the coefficients

2 The negative signs for the momenta on the right-hand side
are a consequence of our different sign convention regarding the
incoming particle (incoming momentum positive) and the out-
going particle (out-going momentum positive).
3 See e.g. [30].
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(a′, c′) considerably:

a′ =
β
(
p′2
)
−β
(
p2
)

g (q2) (p′2−p2)
,

c′ =
α
(
p′2
)
+α
(
p2
)

2g (q2)
,

d′ =
α
(
p′2
)
−α
(
p2
)

g (q2) (p′2−p2)
,

whereas the coefficients j, b, f , g, k, l andm are completely
arbitrary functions of the Lorentz invariants.We make sev-
eral observations.

1. We note first that power counting would associate all
operators except those three with coefficients a′, c′ and
j with a local operator of dimension 6 or higher.

2. We note that the dependence on q2 of both a′ and c′ are
identical. Near mass-shell,4 α

(
p2
)
∼ α0+α1[p2−M2p ]

and β
(
p2
)
∼ β0+β1[p2−M2p ]; and thus,

a′ =
{
β1+O

[
p2−M2p

]}
g−1
(
q2
)
,

c′ =

{
α0+

1

2
α1
[
p2+p′2−2M2p

]}
g−1
(
q2
)
.

(13)

3. The on-shell expression (1) for Γµ(p, p
′) takes opera-

tors of dimensions 4 (electric) and 5 (magnetic) into
account. It is then logical that the only other operator
of dimension 5 should also be included in the off-shell
expression for the Γµ(p, p

′). We shall take these three
terms into account in our minimal effective Lagrangian
model.

4 Effective Lagrangian model

We represent the interaction of the photon–proton system
by an effective non-local Lagrangian model based on the
discussion in the previous section. We adopt the following
guidelines in the process.

– The Lagrangianmodel should incorporate up to dimen-
sion 5 operators, for reasons partly explained in the
previous section. The assumption is that in the effective
Lagrangian approach, the higher dimension operators
will contribute much less. This is borne out in the cal-
culations performed. (See Fig. 12 and the subsequent
discussion.)
– The model should incorporate the results regarding
the form of the coefficients a′ and c′ obtained earlier
(see (13)); thus, at least one should embody the form
factors onmass-shell. The resulting model is necessarily
non-local.
– We assume that the model has lowest order derivatives
for the fermions. Our assumption about the dimension-
ality of the operators is consistent with this.

4 The condition that SF(p)∼
1

�p−Mp
near mass-shell requires

that α0Mp+β0 = 0 and α0+2M
2
pα1+2Mpβ1 = 1.

– We require that this non-local model has an equiva-
lent form of gauge invariance. Such constructions of
non-local versions of local symmetries are known in the
literature [29, 31] and we shall show explicitly that our
model below has a very simple form of non-local gauge
invariance.

A Lagrangianmodel that satisfies these constraints is given
by

L= ψ

(
i �∂− ef ′1

[
∂2

Λ2

]
�A−Mp

)
ψ

+
a′′

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ+

b′′

2Mp
ψD̃2ψ,

where iD̃ = i∂− ef ′1

[
∂2

Λ2

]
A is the non-local covariant

derivative. We point out that the form factors, f ′1 and
f ′2, are to be extracted directly from experiments. We
make a number of observations regarding this effective
Lagrangian.

1. L is invariant under the non-local form of gauge trans-
formations:

δAµ =−∂µα (x) ;

ψ(x)→ e
ief ′1

[
∂2

Λ2

]
α(x)
ψ(x) ,

ψ(x)→ ψ(x)e
−ief ′1

[
∂2

Λ2

]
α(x)

or equivalently,

δAµ =−∂µf
′−1
1

[
∂2

Λ2

]
β (x) ,

ψ(x)→ eieβ(x)ψ(x) ,

ψ(x)→ ψ(x)e−ieβ(x) .

In the latter form, the gauge transformations are simi-
lar to the usual local ones, with the exception that

in the first of these ∂µ→ ∂µf
′−1
1

(
∂2

Λ2

)
. This leads to

the non-local WT identity of (9); i.e., one with a re-

placement qµ→ qµf
′−1
1

(
−q2

Λ2

)
≡ qµg(q2) in (8). Under

this transformation, Fµν and hence the second term is
gauge invariant, independent of the form of f ′2. Also,
the non-local gauge-covariant derivative satisfies D̃ψ→
eieβ(x)D̃ψ(x).

2. The last term generates a term proportional to Pµ in
Γµ(p, p

′) with a form factor proportional to f ′1, the
same one appearing in the electric term. This is consis-
tent with the comment on the form of a′ and c′ given
earlier.

3. The (non-local) gauge invariance of the last term re-
quires that it is composed of the (non-local) gauge-
covariant derivative: this restricts the form factor
present in this term as above.

4. The Lagrangian is exactly valid as long as the proton
is on-shell, irrespective of the value of the momen-
tum transfer q2. In this limit the interaction of the
proton with the photon is described in terms of the
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two form factors and no higher dimensional terms are
required. The higher derivative terms we drop give
higher order contributions in powers of (P 2−M2p )/Λ

2,
where P 2−M2p is the off-shellness of the proton mo-
mentum. These higher order terms can be dropped
as long as the dominant contribution to a process
is obtained from the kinematic region where (P 2−
M2p )/Λ

2
 1.
5. In the limit Λ→∞ we reproduce the local field the-
ory model for a proton with an anomalous magnetic
moment.

Before we proceed, a comment on the non-local form of
gauge invariance is in order. It appears that a local form
of gauge invariance for extended particles such as a pro-
ton is inappropriate. Consider the wave-function of an ex-
tended particle centered at x, viz. ψ(x, t). Let y be a point
within the charge radius R of the proton: |x−y| < R.
Let us imagine that a gauge transformation on Aµ is car-
ried out (at t) around y with a very narrow support, ρ:
ρ
 |x−y|. In the model of fundamental constituents, the
quark wave-function should be affected around y, which
in turn should affect the proton wave-function even though
the gauge transformation at x, depending on α (x), will be
zero. Thus, the proton wave-function should be affected by
a local gauge transformation with a support anywhere in
its charge radius. The above form of non-local version of
gauge transformations embodies this idea. Note that the

Fourier transform of f ′1

[
∂2

Λ2

]
has a support over a distance

∼ 1/Λ∼R.
It proves convenient to rearrange the Lagrangian as

follows5 (recall the relation �D2 =D2+ e2σµνF
µν):

L= ψ
(
i �D̃−Mp

)
ψ+

ã

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ

+
b̄

2Mp
ψ
(
i �D̃−Mp

)2
ψ .

Had there been no magnetic term, the last term would have
formally vanished by the classical equation of motion. We
note that inclusion of the last term has now modified the
inverse propagator: it has non-vanishing terms at e = 0.
This, in particular, gives a spurious pole in the propagator
at another value of �p. This problem can be avoided if we
can write the L in the following form:

L= ψ
(
i �D̃−Mp

)
exp

{
b̄

2Mp

(
i �D̃−Mp

)}
ψ

+
ā

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ , (14)

which is now understood to have been consistently trun-
cated to a given order in b̄. We now note that the inverse

5 Actually, the constant Mp and the normalization of the
KE term are also modified below. However, we shall soon
modify the form of the Lagrangian further, where this proves
unnecessary.

propagator is

(�p−Mp) exp

{
b̄

2Mp
( �p−Mp)

}

and has only one zero at �p−Mp = 0, and the residue of the
propagator at the pole is 1. (In this form of L, ā is related
to the anomalous magnetic moment, κp, by the relation
ā = eκp/2, and Mp is the physical mass). Since we shall
consider, in the two-photon exchange calculation, terms
with the last operator of dimension 5 inserted in two pho-
ton vertices, we shall do the entire calculation consistently
to O

(
b̄2
)
using (14). In this case, the propagator for the

proton is

i

�p−Mp
exp

{
−
b̄

2Mp
(�p−Mp)

}
≈

i

�p−Mp
−
ib̄

2Mp

+
ib̄2

8M2p
(�p−Mp) .

5 Reduction of the action

In this section, we shall find an effective way to calculate
the matrix elements involving insertion of the last term in
the action. Since a two-photon exchange diagram at one
loop is at most O[b̄2], we shall evaluate the effect of this
term to O[b̄2]. What we are interested in are the tree order
matrix elements of two (possibly virtual) photon emission
from an on-shell proton. The calculation of these can be
simplified considerably in this context with the use of the
fermion equations of motion. The result is simple: of all the
terms up to O[b̄2], viz. O[b̄, b̄ā, b̄2, b̄2ā, b̄2ā2], only the last

term of O[b̄2ā2] gives a non-zero result. While the result
can be worked out, it is most effectively dealt with in the
path-integral formulation.
We define

W [Jµ,K,K] =

∫
Dφ exp

{
i

∫
d4x

×
(
L+JµAµ+Kψ+ψK

)}
,

where L is the action of (14) and Dφ denotes generically
the measure of the path integral. We now perform a field
transformation:

ψ = exp

{
−
b̄

2Mp

(
i �D̃−Mp

)}
ψ′. (15)

Under this transformation, the Jacobian is

J = det exp

{
−
b̄

2Mp

(
i �D̃−Mp

)}

= exp tr

{
−
b̄

2Mp

(
i �D̃−Mp

)}

= exp tr

{
b̄

2
I

}
= a constant , (16)
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and hence it can be ignored for the connected Green’s func-
tions. This then yields

W
[
Jµ,K,K

]

=

∫
Dφ exp

{
i

∫
d4x
[
ψ
(
i �D̃−Mp

)
ψ′

+
ā

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)

× exp

{
−
b̄

2Mp

(
i �D̃−Mp

)}
ψ′
]}

× exp i

{∫
d4x

[
JµAµ+ψK

+K exp

{
−
b̄

2Mp

(
i �D̃−Mp

)}
ψ′
]}
.

We note that if we had ā = 0, we would have no
left-over term in the action. It is easy to show that

K
[
exp
{
− b̄
2Mp

[
i �D̃−Mp

]}
−1
]
ψ′ does not contribute to

tree-level on-shell proton matrix elements.6 Thus all tree-
level on-shell two-protonmatrix elements involving the last
term in (14) are at least of order āb̄. We now expand the
action to O[b̄2]. We find

W [Jµ,K,K]

=

∫
Dφ exp

{
i

∫
d4x
[
L′+JµAµ+Kψ

′+ψK
]}

+O[b̄3] ,

with

L′ =

[
ψ+

ā

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)

×

{
−
b̄

2Mp
+
b̄2

8M2p

(
i �D̃−Mp

)}](
i �D̃−Mp

)
ψ′

+
ā

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ′ .

We now perform another field transformation:

ψ+
ā

2Mp
ψ

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)

×

{
−
b̄

2Mp
+
b̄2

8M2p

(
i �D̃−Mp

)}

= ψ
′
≡ ψ[1+X] . (17)

We can write

ψ = ψ
′
[
1+

ā

2Mp

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)

×

{
−
b̄

2Mp
+
b̄2

8M2p

(
i �D̃−Mp

)}]−1

6 This is because one does not have a pole in at least one
of the external momenta; it is forbidden either by an explicit
factor of �p−Mp or by a vertex.

= ψ
′
+ψ

′
(
−
ā

2Mp

)(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)

×

{
−
b̄

2Mp
+
b̄2

8M2p

(
i �D̃−Mp

)}

+O
[
F 2
]
.

Terms O[F 2] will not matter for the present calculation of
two-photon exchange, as it will give a term having three
photon fields. The Jacobian for this transformation is

1/J ′ = det[1+X] = det

[
1+X+

X2

2
−
X2

2
+O
[
b̄3
]]

= det

[
eX−

X2

2
+O
[
b̄3
]]

= det eX det

[
1− e−X

X2

2
+O
[
b̄3
]]

= exp[trX] det

[
1− e−X

X2

2

]

= 1− tr

(
e−X
X2

2

)
+O
[
b̄3
]

= 1− tr
X2

2
+O
[
b̄3
]

= 1−
ā2b̄2

32M4p
f ′2

[
∂2

Λ2

]
Fµνf

′
2

[
∂2

Λ2

]
Fµν × (constant) .

The last termdoesnot contribute to the emissionof twopho-
tons fromaproton line in the tree approximation.Asa result
of the transformation (17), the action then becomes

L′′ = ψ
′
(
i �D̃−Mp

)
ψ′+

ā

2Mp
ψ
′
(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ′

+

(
ā

2Mp

)2(
b̄

2Mp

)
ψ
′
(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)2
ψ′

−

(
ā

2Mp

)2(
b̄2

8M2p

)
ψ
′
(
σαβf

′
2

[
∂2

Λ2

]
Fαβ
)

×
(
i �D̃−Mp

)(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ′+O[b̄3]

and the source term transforms into

ψ
′
[1+X]−1K

= ψ
′
[
1+

(
−
ā

2Mp

)(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)

×

{
−
b̄

2Mp
+
b̄2

8M2p

(
i �D̃−Mp

)}]
K

+ψ
′
(
ā

2Mp

)(
b̄2

8M2p

)(
σαβf

′
2

[
∂2

Λ2

]
Fαβ
)

×

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
K .

None of these terms contributes to the tree approximation
two-photon matrix element for reasons similar as before.
In conclusion, when we look at the two-photon ex-

change diagrams having up to two insertions of the last
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Fig. 3. The two-photon exchange diagram proportional to
b̄2 contributing to the elastic electron–proton scattering. The
Feynman rule for this diagram can be obtained from (18)

term in (14), each set of diagrams contains a common part,
viz., two- (unphysical) photon tree amplitude from an on-
shell proton. The above discussion shows that the net effect
of that comes from the terms

(
ā

2Mp

)2(
b̄

2Mp

)
ψ
′
(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)2
ψ′

−

(
ā

2Mp

)2(
b̄2

8M2p

)
ψ
′
(
σαβf

′
2

[
∂2

Λ2

]
Fαβ
)(
i �D̃−Mp

)

×

(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)
ψ′ . (18)

We shall show in Appendix A that the first term does not
contribute in the Feynman gauge. That leaves us with only
the last term. The Feynman diagram corresponding to this
term is shown in Fig. 3.

6 Calculation and results

In this section we give details of the calculation of the two-
photon exchange diagrams using our effective Lagrangian.
The calculation turns out to be complicated due to the
explicit presence of form factors at the vertices. We also
require models for the form factors both in the space-like
and time-like regions. In the space-like region the form
factor F1(q

2) is known reasonably well. In the time-like re-
gion experimental data exist for the form factor GM(q

2)
for 4M2p < q

2 < 14 GeV2, where 4M2p is the threshold en-

ergy for pp̄ production. In [32], GM(q
2) has been extracted

in the unphysical region 0< q2 < 4M2p by using dispersion

relations [33, 34]. The extracted form factor shows two res-
onances at massesM ∼ 770MeV andM ∼ 1600MeV. The
phase of the magnetic form factor also shows a large vari-
ation in the unphysical region. The electric form factor
GE(q

2), however, is not well known. The amplitude in the
unphysical region is obtained in [35]. However, the phase is
not known. The form factorsGE andGM in the unphysical
region can also be extracted using the results given in [34].

The resulting behavior is very different from that obtained
in [32]. Such differences may introduce uncertainty in our
evaluation of the two-photon exchange contribution, which
can hopefully be reduced in future when the form factors
are known more accurately. In our evaluation we use the
form factors extracted by Baldini et al. [32].
Our model for the form factors is given in Appendix B.

We use two different models. Both consist of a sum of sim-
ple poles. The corresponding masses and widths are given
in Tables 3 and 4. The values of these parameters are ob-
tained by fits to the experimental data or the data obtained
from experiments by using dispersion relations [32]. The
resulting amplitude and phase of the form factors for the
two models are shown in Figs. 4 and 5, respectively.

Fig. 4. The amplitude of GM/µp (solid line) and GE (dot-
ted line is for Model I, dashed line for Model II). The un-

filled squares represent the constrained values for GE at q
2 = 0

and q2 = 4M2. Results of Rosenbluth extraction experiments
(filled circles are for JLAB, unfilled circles for SLAC) are also
shown

Fig. 5. The phase (in degrees) of GM (solid line) and GE (dot-
ted line is for Model I, dashed line for Model II)
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Fig. 6. Amplitude and phase of F1 and F2 for the two different models of GE: a amplitude of F1 (solid line) and F2 (dashed line)
for model I, b phase (in degrees) of F1 (solid line) and F2 (dashed line) for model I, c amplitude of F1 (solid line) and F2 (dashed
line) for model II and d phase (in degrees) of F1 (solid line) and F2 (dashed line) for model II

Using these models for the magnetic and electric form
factors we can obtain the form factors F1 and F2, required
for our calculation. The models used are convenient, since
they allow us to use the Feynman parametrization to com-
pute the loop integrals. The form factors for the twomodels
have a small imaginary part even for space-like momenta.
However, this region contributes negligibly to the loop inte-
grals. The dominant contribution comes from the unphys-
ical region 0< q2 < 4M2p , where the form factor is several
orders of magnitude larger than its value in the space-like
region. In this region our model provides a very good fit
to the extracted form factor [32]. Moreover, the imaginary
part in the space-like region is very small and unlikely to af-
fect our results significantly. The resulting amplitudes and
phases for model I are shown in Fig. 6a and b respectively.
The corresponding results for model II are shown in Fig. 6c
and d.
Using the form-factor models in Appendix B we can de-

termine the amplitudes of the box and cross box diagram
as well as the amplitude due to the extra term displayed
in (18). The box diagram amplitude can be written as

iMB = e
4
∑
a,b

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

((k− l)2−m2e+ iξ)

]

×

[
1

(l2−µ2+ iξ)(q̃2−µ2+ iξ)

]

×

[
Ū(p′)

{
F1(q̃)γµ+ i

κp

2Mp
F2(q̃)σµα q̃

α

}

×

{
�p+ �l+Mp

(p+ l)2−M2p + iξ

}

×

{
F1(l)γν + i

κp

2Mp
F2(l)σνβ l

β

}
U(p)

]
, (19)

where q̃ = q− l,me is the mass of the electron, and ξ is an
infinitesimal positive parameter.7 A small mass of the pho-

7 Here we use the notation ξ instead of the standard nota-
tion ε to avoid confusion with the symbol ε used to denote the
longitudinal polarization of the photon.
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ton µ has been introduced in order to regulate the infrared
divergence in these integrals. The infrared divergent part
has to be subtracted from our result, since it is included
in the standard radiative corrections that are applied while
extracting the form factor. Using the form-factor model in
Appendix B, we find

iMB = e
4
∑
a,b

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

((k− l)2−m2e+ iξ)

]

×

[
1

(l2−µ2+ iξ)(q̃2−µ2+ iξ)

]

×

[
Ū(p′)

{(
Caga(q̃)−4M

2
pDag̃a(q̃)

)
γµ

+(i2MpDag̃a(q̃))σµαq̃
α}

{
�p+ �l+Mp

(p+ l)2−M2p + iξ

}

×
{(
Cbgb(l)−4M

2
pDbg̃b(l)

)
γν

+(i2MpDbg̃b(l))σνβl
β
}
U(p)

]
. (20)

It is convenient to rewrite this expression in terms of the
coefficients C′ andD′, defined in Appendix B. We find,

iMB = e
4
∑
i,j

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

(k− l)2−m2e+ iξ

]

×

[
Ū(p′)

{(
C′igi(q̃)−4M

2
pD
′
igi(q̃)

)
γµ

+
(
i2MpD

′
igi(q̃)

)
σµαq̃

α

}{
�p+ �l+Mp

(p+ l)2−M2p + iξ

}

×

{(
C′jgj(l)−4M

2
pD
′
jgj(l)

)
γν

+
(
i2MpD

′
jgj(l)

)
σνβl

β

}
U(p)

]
(21)

≡ e4
∫
d4l

(2π)4

[
1

((k− l)2−m2e+ iξ)

]

×

[
1

((p+ l)2−M2p + iξ)

]

×
∑
i,j

[
n1(C

′
i, D

′
i, C

′
j , D

′
j)+ l

4n2(C
′
i, D

′
i, C

′
j , D

′
j)

]
,

where the last step defines the factors n1(C
′
i, D

′
i, C

′
j , D

′
j)

and n2(C
′
i, D

′
i, C

′
j , D

′
j). We may cancel the l

2 factor multi-
plying n2(C

′
i, D

′
i, C

′
j , D

′
j) with a factor (l

2−µ2+iξ) in the
denominator. We then find

iMB = e
4

∫
d4l

(2π)4

[
1

((k− l)2−m2e+ iξ)

]

×

[
1(

(p+ l)2−M2p + iξ
)
]

×
∑
i,j

[
n1
(
C′iD

′
i, C

′
j , D

′
j

)
+ l2n2

(
C′i, D

′
i, C

′′
j , D

′′
j

)
]
.

(22)

The cross box diagram amplitude is given by

iMCB = e
4
∑
a,b

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

(k− l)2−m2e+ iξ

]

×

[
1

(l2−µ2+ iξ)(q̃2−µ2+ iξ)

]

×

[
Ū(p′)

{
F1(l)γν+ i

κp

2Mp
F2(l)σνβl

β

}

×

{
�p+ �q− �l+Mp
(p+ q̃)2−M2p + iξ

}

×

{
F1(q̃)γµ+ i

κp

2Mp
F2(q̃)σµα q̃

α

}
U(p)

]
.

(23)

Using the form-factor model given in Appendix B it can be
written as

iMCB = e
4
∑
a,b

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

(k− l)2−m2e+ iξ

]

×

[
1

(l2−µ2+ iξ)(q̃2−µ2+ iξ)

]

×

[
Ū(p′)

{(
Cbgb(l)−4M

2
pDbg̃b(l)

)
γν

+
(
i2MpDbg̃b(l)

)
σνβ l

β

}{
�p+ �q− �l+Mp
(p+ q̃)2−M2p + iξ

}

×

{(
Caga(q̃)−4M

2
pDag̃a(q̃)

)
γµ

+
(
i2MpDag̃a(q̃)

)
σµαq̃

α

}
U(p)

]
. (24)

The amplitude proportional to b̄2 is given by

iMb̄ =

(
e4b̄2

8M2p

)∑
a,b

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

(k− l)2−m2e+ iξ

]

×

[
1

(l2−µ2+ iξ)(q̃2−µ2+ iξ)

]

×

[
Ū(p′)

{(
iκp
2Mp

F2(q̃)σµα(q̃)
α

)
(�p+ �l−Mp)

×

(
iκp
2Mp

F2(l)σνβ l
β

)
+

(
iκp
2Mp

F2(l)σνβl
β

)

× (�p+ �q− �l−Mp)

(
iκp
2Mp

F2(q̃)σµαq̃
α

)}
U(p)

]
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=

(
e4b̄2

8M2p

)∑
i,j

∫
d4l

(2π)4

[
ū(k′)γµ(�k− �l)γνu(k)

(k− l)2−m2e+ iξ

]

×
[
Ū(p′) {(i2MpD

′
igi(q̃)σµαq̃

α) (�p+ �l−Mp)

×
(
i2MpD

′
jgj(l)σνβ l

β
)
+
(
i2MpD

′
jgj(l)σνβl

β
)

× (�p+ �q− �l−Mp) (i2MpD
′
igi(q̃)σµα q̃

α)}U(p)] .

In our numerical calculation we set the mass of the electron
me = 0.
The contribution of the two-photon exchange diagrams

to the electron–proton elastic scattering cross section can
be written as

dσ2γ

dΩe
=
2Re(M∗

0M2γ)E
′2
e

64M2pπ
2E2e

+O(α4) , (25)

where

M2γ =MB+MCB+Mb̄ (26)

is the total amplitude of the two-photon exchange dia-
grams, and

M0 =−
e2

q2
ū(k′)γµu(k)Ū(p′)

×

(
F1(q)γµ+

iκp
2Mp

F2(q)σµαq
α

)
U(p) (27)

is the tree amplitude. Hence, the contribution of the two-
photon exchange diagrams to the reduced cross section is
given by

σ2γR =
ε(1+ τ)

σMott

dσ2γ

dΩe

=

(
4E3e sin

4 θe
2

α2E′e cos
2 θe
2

)
ε(1+ τ)

(
2Re

(
M∗
0M2γ

)
E
′2
e

64M2pπ
2E2e

)

=
q4ε(1+ τ)

32α2π2M2p (q
2+4EeE′e)

Re
(
M∗
0M2γ

)
. (28)

The diagram proportional to b̄2 has no infrared (IR)
divergent term. So the contribution coming from it is com-
puted keeping µ2 = 0. Contributions from box and cross
box diagrams are computed at 10 different values of µ2

(from 0.005 to 0.0095). The numerical calculation of the
cross box diagram is straightforward since the integral is
well defined. However, for the evaluation of the box di-
agram the numerical evaluation is facilitated by keeping
a small imaginary term ξ in the propagators. This makes
the integral in the infrared limit well defined in the case
me = 0. For each value of q

2, ε and µ2, we have calcu-
lated the box diagram amplitude for 4 different values of
ξ (between 0.001 and 0.00175). The amplitudes depend al-
most linearly on ξ. The final µ2 dependent box diagram
amplitudes are obtained by extrapolation to ξ = 0. The
two different models for the form factors described in Ap-
pendix B give almost identical results. So for the rest of
the section we quote the result obtained using model-I
only.

The IR behavior of the two-photon diagrams has been
calculated by Mo and Tsai [18, 19]. In the limit µ2→ 0 the
leading term from the box and cross box diagram can be
expressed as

M2γ
IR =

α

π
[K(p′, k)−K(p, k)]M0 , (29)

where

K(pi, pj) = (pi.pj)

∫ 1
0

dx

(xpi+(1−x)pj)2

× ln

[
(xpi+(1−x)pj)2

µ2

]
.

The IR contribution to the reduced cross section coming
from the box and cross box diagram is given by

σ2γIR =
2α

π
[K(p′, k)−K(p, k)]σ1γR . (30)

Fig. 7. Total contribution of the box and cross box diagram
to the elastic electron–proton scattering for Q2 = 2.64 GeV2

a, 3.20 GeV2 b, 4.10 GeV2 c. The dashed lines represent f1,
see (33), and the solid curves represent f2, see (34). The fitting
parameters are given in Table 1
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Let

σ2γIR ≡ air+ bir lnµ
2 . (31)

To remove the IR part from σ2γR we fit it with the follow-
ing function:

σ2γR = a(µ
2)+ b(µ2) lnµ2 , (32)

with

a(µ2) = a0+air+a1µ
2+O[µ4] ,

b(µ2) = bir+ b1µ
2+O[µ4] .

Here a0 gives the IR removed σ
2γ
R . It has been explicitly

verified that keeping O[µ4] terms in a(µ) and b(µ) has no
effect on the slope (and thus on GE) of σ

2γ
R (ε) with respect

Fig. 8. Total contribution of the box and cross box diagram
to the elastic electron– proton scattering for Q2 = 5GeV2 a,
6 GeV2 b. The dashed lines represent f1, see (33), and the solid
curves represent f2, see (34). The fitting parameters are given
in Table 1

to ε. The difference between these two fits leads to a very
small correction to GM only and hence can be ignored.
The result of the calculation for the box and cross box

diagrams is given in Figs. 7 and 8. Here we have consid-
ered the momentum transfer Q2 = 2.64, 3.20, 4.10, 5.00
and 6.00GeV2. The first three values are the same as those
used in the JLAB extraction of form factors using the
Rosenbluth separation. The contribution from the diagram
proportional to b̄2 is shown in Figs. 9 and 10. Here b̄ is

taken as 1. We fit σBCBR ≡ (σBR+σ
CB
R ) and σ

b̄
R (here and

for rest of the section we use the notation σ2γR and σ
BCB
R

to denote the IR removed contributions) to the following
functions:

f1(ε) = c1+ c2ε , (33)

f2(ε) = d1+d2ε+d3ε
2 . (34)

Fig. 9. Contribution of the diagram proportional to b̄2 to
the elastic electron proton scattering for Q2 = 2.64 GeV2 a,
3.20 GeV2 b, 4.10 GeV2 c. Here b̄ = 1. The dashed lines repre-
sent f1, see (33), and the solid curves represent f2, see (34). The
fitting parameters are given in Table 2
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Fig. 10. Contribution of the diagram proportional to b̄2 to the
elastic electron–proton scattering for Q2 = 5GeV2 a, 6 GeV2 b.
Here b̄= 1. The dashed lines represent f1, see (33), and the solid
curves represent f2, see (34). The fitting parameters are given
in Table 2

The values of c1, c2 and d1, d2, d3 for σ
BCB
R and σb̄R are

given inTables 1 and 2, respectively. FromTables 1 and 2we
also see that the contribution due to the b̄ term is relatively
small as long as the magnitude of b̄ is of order unity. As the
magnitude of b̄ is unknown we shall assume b̄ ≈ 0 and take
σ2γR ≈ σ

BCB
R for the rest of the section.

Figure 11 shows the contribution of the dimension five
operator proportional to F2 to the reduced cross section.
This contribution is obtained from the box and cross box
diagrams. For comparison we also show the total contri-
bution of both these diagrams. The IR µ2 dependence is
not removed in this calculation and the parameters chosen
areQ2 = 4.10GeV2 and µ2 = 0.005GeV2. We find that the
contribution from terms proportional to F2×F2 is much
smaller compared to the total contribution, justifying the
truncation of our action to only operators of dimension five.
To obtain the corrected σR we subtract the linear fit to

σ2γR and f
2γ
1 (ε) (see (33) and Table 1), from a linear fit to

Table 1. Values of fitting parameters for (σBR+σ
CB
R ). All num-

bers have been scaled by 104. The parameters c1 and c2 are de-
fined at (33) and d1, d2 and d3 are defined at (34). The standard
errors obtained in fitting the result are also shown. Figures 7
and 8 show the functions f1 and f2 for this case

Q2 c1 c2 d1 d2 d3

2.64 −3.39 5.59 −4.06 9.58 −4.04
±0.30 ±0.48 ±0.12 ±0.59 ±0.58

3.20 −2.31 3.99 −2.94 7.53 −3.69
±0.25 ±0.45 ±0.08 ±0.38 ±0.38

4.10 −1.20 2.23 −1.61 4.30 −1.95
±0.15 ±0.25 ±0.11 ±0.47 ±0.43

5.00 −0.79 1.63 −1.13 3.59 −1.96
±0.16 ±0.28 ±0.10 ±0.47 ±0.46

6.00 −0.44 1.10 −0.69 2.55 −1.45
±0.12 ±0.21 ±0.08 ±0.40 ±0.39

Table 2. Values of fitting parameters for σb̄R with b̄ = 1. All
numbers have been scaled by 106. The standard errors obtained
in fitting the result are also shown. The parameters c1 and c2
are defined at (33) and d1, d2 and d3 are defined at (34). Fig-
ures 9 and 10 show the functions f1 and f2 for this case

Q2 c1 c2 d1 d2 d3

2.64 11.60 −8.23 9.65 3.37 −11.73
±0.86 ±1.41 ±0.37 ±1.81 ±1.79

3.20 10.21 −5.27 9.04 1.29 −6.84
±0.45 ±0.83 ±0.12 ±0.59 ±0.60

4.10 8.75 −3.67 7.86 0.86 −4.27
±0.31 ±0.52 ±0.04 ±0.16 ±0.14

5.00 7.37 −2.23 6.95 0.20 −2.43
±0.19 ±0.34 ±0.06 ±0.29 ±0.28

6.00 6.36 −1.55 6.12 −0.12 −1.43
±0.12 ±0.21 ±0.09 ±0.44 ±0.42

Fig. 11. The contribution to the reduced cross section coming
from terms proportional to F2(l)F2(q− l) inMCB andMB for

Q2 = 4.10 GeV2 and µ2 = 0.005 GeV2 (filled circles). The un-
filled circles represent the total contribution coming from both
the form factors F1 and F2 for the same Q

2 and µ2
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σLTR (ε) given by

σLTR (ε) = G0(1+ εG1) . (35)

Then the corrected reduced cross section is

σ̄R(ε)≡ σ
LT
R −σ

2γ
R

=
(
G0− c

2γ
1

)
+ ε
(
G0G1− c

2γ
2

)
. (36)

In Fig. 12 we plot σ̄R(ε) for different Q
2. We determine

the corrected form factors ḠM and ḠE by

ḠM =
1

τ

√
G0− c

2γ
1 , (37)

ḠE =

√
G0G1− c

2γ
2 . (38)

Figure 13 shows how the ratio µpGE/GM is modified by
the two-photon exchange contributions. The SLAC Rosen-

Fig. 12. Corrected cross section, σ̄R (solid lines) obtained
using (15) with b̄ = 0 for Q2 = 2.64 GeV2 a, 3.20 GeV2 b,

4.10 GeV2 c. The unfilled circles represent the data points ob-
tained by the Rosenbluth separation method at JLAB and the
dashed lines are the straight line fits to these

Fig. 13. The ratio µpGE/GM obtained by the polarization
transfer technique at JLAB (filled triangles) and the Rosen-
bluth separation technique at SLAC (unfilled squares) and
JLAB (filled squres). The ratio after correcting for the two-
photon exchange contribution is also shown. The filled circles
are the corrected JLAB Rosenbluth data and the dotted line is
the best fit through these points. The unfilled circles are the
corrected SLACRosenbluth data and the dashed line is the best
fit through these points

bluth data after applying the two-photon exchange cor-
rection are shown by the unfilled circles. The dotted line
represents the best linear fit through these data. We find
that the two-photon exchange correction completely ex-
plains the difference between the SLAC Rosenbluth sepa-
ration data and the JLAB polarization transfer data. How-
ever, it is not able to explain the difference between the
JLAB Rosenbluth and polarization transfer results. The
corrected JLAB Rosenbluth data are shown by filled cir-
cles. The JLAB Rosenbluth data lie systematically above
the SLAC data.

7 Conclusions

In this paper we have constructed a non-local Lagrangian
to model the electromagnetic interaction of the proton.
The model is invariant under a non-local form of gauge
transformations and incorporates all operators up to di-
mension five. The model displays the standard electro-
magnetic vertex of an on-shell proton. The dimension five
operators also contain an operator with an unknown coeffi-
cient, whose value can be extracted experimentally. We use
this model to compute the two-photon exchange diagrams
contributing to elastic scattering of an electron with a pro-
ton. The calculation requires the proton form factors in the
entire kinematic range. We find that the two-photon ex-
change diagram contribution to the reduced cross section
σR shows a slightly non-linear dependence on the longitu-
dinal polarization of the photon ε. The non-linearity seen
is within the experimental error bars of the Rosenbluth
data. We apply the correction due to two-photon exchange
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contributions to both the SLAC and JLAB Rosenbluth
separation data. The resulting cross section for the SLAC
data is completely consistent with the JLAB polarization
transfer results. However, the JLAB Rosenbluth data still
show a large deviation. It, therefore, appears that the two-
photon exchange is able to explain the difference in the
experimental extraction of proton electromagnetic form
factor GE using the Rosenbluth separation and polariza-
tion transfer techniques if we accept the SLAC Rosenbluth
data, which are available over a larger momentum range.
Similar trends have also be observed in the two-photon ex-
change contributions obtained in [23–25,27].

Appendix A

We shall show in this appendix that the first term in (18)
proportional to

ψ
′
(
σµνf

′
2

[
∂2

Λ2

]
Fµν
)2
ψ′

does not contribute to the two-photon matrix element in
the one-loop approximation in the Feynman gauge in the
zero electron mass limit me = 0. For this purpose we write
the term as

1

2
ψ
′
(σµνσλρ+σλρσµν) f

′
2

[
∂2

Λ2

]
Fµνf ′2

[
∂2

Λ2

]
Fλρψ′ .

We then note the following.

– σµνσλρ+σλρσµν is a linear combination of I and γ5 =
α (gµλgνρ− gµρgνλ) I+ iβξµνλργ5, where α, β are con-
stants and, in particular, no σ terms appear.
– The Feynman integral has no dependence on both p and
p′.
– Thus, the result for the two-photon exchange diagram
is of the form

u(k′)γµγαγνu(k)U(p
′)[I, γ5]U (p)× I

µαν(k, k′) .

On simplification, this becomes

u(k′)
{
gµαγν + gναγµ− gµνγα+4iξµανβγ

βγ5
}
u(k)

×U(p′)[I, γ5]U (p)× I
µαν(k, k′) .

Now, gµαI
µαν(k, k′) is a linear combination of terms

that are∼ kν or k′ν . Both of these terms give zero. Simi-
lar logic applies to all other terms.

Appendix B: Model for the form factors

The fits for GM/µp andGE are given by

GM(q
2)

µp
=

4∑
a=1

A
′

a

(q2−m2a+ imaΓ
′
a)
, (B.1)

GE(q
2) =

6∑
a=1

B
′

a

(q2−m2a+ imaΓ
′
a)
. (B.2)

We have considered two fits for GE. The values of the
masses and the parameters are tabulated in Table 3
(model I) and Table 4 (model II).
Using the models for the magnetic and electric form fac-

tors we can determine the Dirac and Pauli form factors. Let
the fits to the form factors GM and GE be

GM(q
2) =

6∑
a=1

Aaga(q
2) , (B.3)

GE(q
2) =

6∑
a=1

Baga(q
2) , (B.4)

with Aa = µpA
′

a and Ba =B
′

a. The ga are defined by

ga(q
2) =

1

q2−m2a+ iΓa
. (B.5)

Table 3.Masses, widths and parameter values for GM/µp and

GE fits (model I). The A
′

and B
′

are defined in (B.1) and (B.2)

a A
′

a B
′

a ma Γ
′

a

1 −2.882564 −3.177877 0.8084 0.2226
+i 1.944314 +i 2.123389

2 2.882564 3.177877 0.9116 0.1974
−i 1.944314 −i 2.123389

3 −1.064011 −0.608148 1.274 0.5712
−i 3.216318 −i 5.685885

4 1.064011 0.608148 1.326 0.5488
+i 3.216318 +i 5.685885

5 0 3.211388 1.96 1.02
+i 0.693412

6 0 −i 0.693412 2.04 0.98
−i 0.693412

Table 4. Masses, widths and parameter values for GM/µp
and GE fits (model II). The A

′

and B
′

are defined in (B.1)
and (B.2)

a A
′

a B
′

a ma Γ
′

a

1 −2.882564 −3.392256 0.8084 0.2226
+i 1.944314 +i 2.194129

2 2.882564 3.392256 0.9116 0.1974
−i 1.944314 −i 2.194129

3 −1.064011 1.224037 1.274 0.5712
−i 3.216318 −i 6.877523

4 1.064011 −1.224037 1.326 0.5488
+i 3.216318 +i 6.877523

5 0 1.645805 2.107 0.663
+i 1.824298

6 0 −1.645805 2.193 0.637
−i 1.824298
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The form factors, F1 and F2, are given by

κpF2 =
GM−GE
1+ τ

= 4M2p
GE−GM
q2−4M2p

=
∑
a

4M2pDag̃a , (B.6)

F1 =GM−κpF2 =
6∑
a=1

(
Caga−4M

2
pDag̃a

)
,

(B.7)

where Ca = Aa, Da = Ba−Aa and g̃a = ga/
(
q2−4M2p

)
.

These definitions are convenient in evaluating the two-
photon exchange amplitudes. We also have

κpF2

q2−µ2+ iξ

=
6∑
a=1

4M2pDa

(q2−µ2+ iξ)(q2−4M2p )(q
2−m2a+ iΓa)

(B.8)

=
8∑
i=1

4M2pD
′
i

q2−m2i + iΓi
, (B.9)

with m7 = µ, m8 = 2Mp, Γ7 = ξ and Γ8 = 0. Here (a =
1, 2, ..., 6)

D′a =

[
1

m2a−4M
2
p − iΓa

−
1

m2a−µ
2+ iξ− iΓa

]

×
Da(

4M2p −µ
2+ iξ

) ,

D′7 =
6∑
a=1

Da(
4M2p −µ

2+ iξ
)
(m2a−µ

2+ iξ− iΓa)
,

D′8 =−
6∑
a=1

Da(
4M2p −µ

2+ iξ
) (
m2a−4M

2
p − iΓa

) = 0 .

The coefficient D′8 is found to be zero, and hence the sum-
mation in (B.9) terminates at i= 7. Similarly,

F1

q2−µ2+ iξ
=

8∑
i=1

C′i−4M
2
pD
′
i

q2−m2i + iΓi
, (B.10)

where

C′a =
Ca

m2a−µ
2+ iξ− iΓa

,

C′7 =−
6∑
a=1

Ca

m2a−µ
2+ iξ− iΓa

,

C′8 = 0.

We can also write F1 and κpF2 using this general notation.
We find

κpF2 =
7∑
i=1

4M2pD
′′
i

q2−m2i + iΓi
, (B.11)

F1 =
7∑
i=1

C′′−4M2pD
′′
i

q2−m2i + iΓi
, (B.12)

with

D′′a =
Da

m2a−4M
2
p + iξ− iΓa

,

D′′7 = 0 ,

C′′a =Aa ,

C′′7 = 0 .

Appendix C: Sample calculation: box diagram

Here we present a sample calculation of one of the terms
in the box diagram. The contribution of the box diagram
amplitude to the two-photon exchange cross section is pro-
portional to

M∗
0M

′
B = i

e6

q2

∑
i,j

IijB , (C.1)

where,

IijB =

∫
d4l

(2π)4
N ij(l)

((k− l)2−m2e+ iξ)(l
2−m2j + iΓj)

×
1

((p+ l)2−M2p + iξ)(q̃
2−m2i + iΓi)

. (C.2)

We can now evaluate this integral by the standard Feyn-
man parametrization technique. We define

D = l2+2l(x2p−x1k−x3q)+x3(q
2−m2i )

−x4m
2
j + iξ+i(x3Γ

′
i +x4Γ

′
j ) , (C.3)

with Γ ′i = Γi−ξ. We now define the shifted momentum r=
l+(x2p−x1k−x3q), which givesD = r2−∆′, with

∆′ = x21m
2
e+x

2
2M

2
p −x3(1−x1−x2−x3)q

2

−2x1x2EMp+x3m
2
i +x4m

2
j − iξ− i(x3Γ

′
i +x4Γ

′
j ) .

With this momentum shift the numerator becomes

N ij(l) =N0+ rµN
µ
1 + rµrνN

µν
2 + rµrνrρN

µνρ
3 .

Hence,

IijB = 6

∫ 1
0

Π4α=1dxαδ

(
4∑
α=1

xα−1

)

×

∫
d4r

(2π)4
N0+ rµN

µ
1 + rµrνN

µν
2 + rµrνrρN

µνρ
3

(r2−∆′)4
.

As the denominator depends only on the magnitude of r,

∫
d4r

(2π)4
rµN

µ
1

D4
= 0 ,

∫
d4r

(2π)4
rµrνN

µν
2

D4
=

∫
d4r

(2π)4

1
4gµνN

µν
2 r

2

D4
,
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∫
d4r

(2π)4
rµrνrρN

µνρ
3

D4
= 0 .

Let N2 be the shorthand notation for
1
4gµνN

µν
2 . Then

IijB = 6

∫ 1
0

Π4α=1dxαδ

(
4∑
α=1

xα−1

)

×

∫
d4r

(2π)4
N0+ r2N2
(r2−∆′)4

=
i

16π2
(I0−2I2) ,

I0 =

∫ 1
0

dx3

∫ 1−x3
0

dx2

∫ 1−x3−x2
0

dx1
N0
∆2
,

I2 =

∫ 1
0

dx3

∫ 1−x3
0

dx2

∫ 1−x3−x2
0

dx1
N2
∆
.

Here

∆= x21m
2
e+x

2
2M

2
p −x3(1−x1−x2−x3)q

2

−2x1x2EMp+x3m
2
i +(1−x1−x2−x3)m

2
j

− iξ− i(x3Γ
′
i +(1−x1−x2−x3)Γ

′
j ) .

If we neglect the mass of electron, then

∆≈ x22M
2
p −x3(1−x1−x2−x3)q

2−2x1x2EMp

+x3m
2
i +(1−x1−x2−x3)m

2
j − iξ

− i(x3Γ
′
i +(1−x1−x2−x3)Γ

′
j )

≡Xx1+Y ,

where

X =−2x2EMp+x3q
2−m2j + iΓ

′
j

Y = x22M
2
p −x3(1−x2−x3)q

2

+x3
(
m2i −m

2
j

)
+(1−x2)m

2
j

− iξ− ix3(Γ
′
i −Γ

′
j )− i(1−x2)Γ

′
j .

N0 and N2 can be written as

N0 = Z3+Z4x1+Z5x
2
1 ,

N2 = Z1+Z2x1 .

Then

I0 =

∫
[dx]
Z3+Z4x1+Z5x

2
1

(Xx1+Y )2
,

I2 =

∫
[dx]

Z1+Z2x1
(Xx1+Y )

,

where
∫
[dx]≡

∫ 1
0

dx3

∫ 1−x3
0

dx2

∫ 1−x3−x2
0

dx1 .

The x1 integration can be done analytically to obtain

IijB =
i

16π2

∫ 1
0

dx3

∫ 1−x3
0

dx2

×

[
−2Z1X2+X(2Z2Y +Z4)−2Z5Y

X3
ln

(
XL+Y

Y

)

+
L

X2Y (XL+Y )

{
2Z5Y

2+X2(Z3−2Z2LY )

−XY (2Z2Y +Z4−Z5L)}] , (C.4)

where L = 1− x3 − x2. The Zi are obtained using
FORM [36] and the IijB are numerically computed using the
Gauss–Legendre integration technique [37].
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